Use the create_summary_table
function to calculate mean
results for each performance measure across replications.
First we run 10 replications of the model:
# create default experiment - turn off event logging
default_experiment <- create_experiment(log_level=0)
# run 5 replications of the model (return is list of simmer envs)
envs <- multiple_replications(default_experiment, n_reps=10)
#> [1] "running replications..."
#> [1] "Complete."
# convert envs into a data.table of KPIs by replication.
rep_table <- replication_results_table(envs, default_experiment)
Then we pass the data.frame
containing the replications
to the create_summary_table
function.
summary_table <- create_summary_table(rep_table)
summary_table
#> mean
#> 00_arrivals 228.50
#> 01a_triage_wait 29.59
#> 01b_triage_util 0.59
#> 02a_registration_wait 108.24
#> 02b_registration_util 0.83
#> 03a_examination_wait 27.24
#> 03b_examination_util 0.83
#> 04a_treatment_wait(non_trauma) 136.42
#> 04b_treatment_util(non_trauma) 0.85
#> 05_total_time(non-trauma) 235.82
#> 06a_stabilisation_wait 246.10
#> 06b_stabilisation_util 0.79
#> 07a_treatment_wait(trauma) 7.52
#> 07b_treatment_util(trauma) 0.29
#> 08_total_time(trauma) 380.71
#> 09_throughput 152.00
To quickly create a histogram use the
histogram_of_replications
function. Set the
column_name
parameter to one of the KPI names listed in the
summary table above. E.g.